1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
cedric28508980 edited this page 2 weeks ago


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion criteria to develop, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses support discovering to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential distinguishing function is its support learning (RL) step, which was used to improve the design's reactions beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, eventually boosting both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, suggesting it's equipped to break down complex inquiries and reason through them in a detailed manner. This assisted thinking process permits the design to produce more accurate, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually recorded the market's attention as a versatile text-generation model that can be integrated into different workflows such as representatives, rational thinking and data analysis jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion specifications, enabling effective reasoning by routing questions to the most appropriate expert "clusters." This approach permits the model to focus on different problem domains while maintaining overall effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more efficient models to mimic the habits and thinking patterns of the larger DeepSeek-R1 model, using it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, prevent hazardous content, and assess designs against essential safety criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce several guardrails tailored to various usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and it-viking.ch under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit increase, create a limitation increase demand and reach out to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Establish permissions to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid hazardous material, and evaluate designs against crucial security criteria. You can execute security measures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 design.

The model detail page provides necessary details about the model's capabilities, prices structure, and execution guidelines. You can discover detailed usage instructions, including sample API calls and code snippets for combination. The model supports various text generation tasks, including content production, code generation, and question answering, utilizing its support discovering optimization and CoT thinking capabilities. The page also consists of deployment choices and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be prompted to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, enter a number of instances (in between 1-100). 6. For Instance type, pick your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can set up advanced security and infrastructure settings, including virtual private cloud (VPC) networking, service role consents, and file encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you may desire to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start using the model.

When the release is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive user interface where you can experiment with different prompts and adjust model specifications like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum outcomes. For instance, content for reasoning.

This is an outstanding way to check out the model's thinking and text generation abilities before incorporating it into your applications. The play ground supplies immediate feedback, helping you comprehend how the model reacts to various inputs and letting you tweak your prompts for optimal outcomes.

You can quickly test the model in the play ground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, pipewiki.org use the following code to execute guardrails. The script initializes the bedrock_runtime customer, 89u89.com configures inference criteria, and sends a request to generate text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers two hassle-free methods: utilizing the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you pick the technique that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design web browser displays available designs, with details like the service provider name and design capabilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card shows essential details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if relevant), showing that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to view the design details page.

    The design details page includes the following details:

    - The model name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the design, it's recommended to examine the model details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the immediately produced name or create a custom one.
  1. For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is essential for cost and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the model.

    The release procedure can take numerous minutes to finish.

    When implementation is total, your endpoint status will alter to InService. At this moment, the model is ready to accept reasoning demands through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is complete, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid unwanted charges, finish the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the design using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace deployments.
  5. In the Managed releases area, locate the endpoint you want to delete.
  6. Select the endpoint, wiki.myamens.com and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build innovative services utilizing AWS services and sped up compute. Currently, he is focused on establishing methods for fine-tuning and enhancing the inference performance of large language designs. In his spare time, Vivek takes pleasure in treking, watching movies, and trying different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and it-viking.ch strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing services that help customers accelerate their AI journey and unlock service worth.